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1. Phys.: Condens. Matter 7 (1995) 8939-8952. Printed in the UK 

Pools of ions trapped below the surface of superfluid helium: 
modes of response in a steady vertical magnetic field 

N J Appleyardt, P L Elliott, C I Pakes, L Sicbekt and W F Vinen 
School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT. UK 

Received 15 August 1995 

Abstract The paper is concerned with two-dimensional classical fluids and solids composed 
of charged panicles that interact only through Coulomb forces. An example of this type of 
system. and one with which the paper is particularly concemed, is a circular pool of either 
positive or negative ions trapped just below the free surface of superfluid helium. A calculation 
is presented of the modes of rwponse of such a system in its own plane when exposed to an 
oscillating electric potential, especially in the long-wavelength limit and in the presence of a 
steady magnetic field applied in a direction normal to the plane of the system. The calculalions 
are nlevant to the experimental detection and study of these modes. which include shear modes 
in the clystal phase and viscous modes in the fluid phase. 

1. Introduction 

Pools of either positive or negative ions can be trapped just below the free surface of 
superfluid 4He (see, for example, Barenghi et al 1991). The pools form two-dimensional 
arrays of particles interacting through Coulomb forces: since the effective masses M of the 
ions are high (about 30 m4 for the positive ion and about 237 m4 for the negative ion), 
the pools behave classically. The ions have in practice some thermally excited vertical 
motion, so that pools are not strictly two-dimensional. However, the vertical motion has 
an amplitude that is much smaller than the ionic separation and a frequency that is much 
higher than any with which we are concerned in this paper. For the purpose of the present 
paper therefore the pools can be treated as two-dimensional. The details of the trapping 
mechanism and the nature of the ions are described Barenghi et a l ,  but they need not 
concem us here. 

The pools can'exist as two-dimensional Coulomb crystals or as two-dimensional fluids, 
depending on the temperature Winen et al 1994). They may also exist in a hexatic phase 
in a range of temperature between the crystal and fluid phases (Nelson and Halperin 1979). 
This paper is concerned with calculations of the expected response of  these pools in the 
horizontal plane when they are exposed to an oscillating electric potential. We consider the 
response of both the crystal and Ruid phases, especially in the presence of a steady vertical 
magnetic field. The calculations underlie various experimental investigations, particularly 
of shear-mode propagation in the pools, which are being published separately (Elliott et a1 
199Sa)l Although our calculations relate specifically to ion pools, they are applicable to 
other two-dimensional systems of this type: for example to electron pools trapped above 
the helium surface (see, for example, Grimes and A d a m  1976). 

t Present address: Depatment of Physics, University of Exeter, Exeter EX4 4QL. UK. 
t Permanent address: Institute of Physics. 25068 Re? Czech Republic. 
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In the absence of the magnetic field there are two separate and independent modes 
of response: longitudinal plasma modes and wansverse shear modes. The plasma modes, 
which were first observed by Ott-Rowland et d (1982) and studied in detail by Barenghi ef 
a l  (1991), are essentially similar in all phases of the pool. If we neglect a small damping 
the transverse modes in the crystal phase have the dispersion relation 

where no is the areal number density in the pool and f i  is the shear modulus of the crystal, 
given at a low temperature by (Bonsall and Maradudin 1977) 

Transverse modes in the fluid phase are viscous waves with the dispersion relation 

ivk2 
U" = -noM 

where q is the shear viscosity of the plasma. We can usefully think of the fluid as having 
an effective shear modulus equal to -iwq. In a hexatic phase the transverse modes are 
expected to be more complicated (Zippelius et a1 1980). and we shall not consider them in 
this paper. 

In the presence of a steady vertical magnetic field B these modes are modified and the 
longitudinal and transverse modes become coupled through the action of the Lorentz force. 
Several studies of the effect on the longitudinal modes have been published (Mellor ef al 
(1988) and Appleyard et a1 (1995) for the ion pools, and Glattli eral (1985) and Mast et al 
(1985) for the electron pools), but they have not taken account of any shear modulus. A brief 
discussion of the effect of a magnetic field on the transverse modes was included in a report 
of the observation of transverse modes in the crystal phase of the electron pools (Deville 
et al 1984). but not all aspects of the theoretical problem were explored. In this paper we 
shall present detailed calculations that take account of the shear moduli, for both the crystal 
and fluid phases. The effect on the longitudinal modes turns out to be small, and we shall 
concentrate our attention on the shear modes. The results of our calculations are important 
because they lead to experimental methods for the study of the shear modulus in the crystal 
phase (Elliott et al 1995a) and the shear viscosity in the fluid phase. These experimental 
methods may also provide a tool for a study of the anomalous dynamic properties that are 
expected to be associated with a hexatic phase. In practice the modes of the pools are excited 
by applying an oscillating potential to a set of electrodes surrounding the pool and detected 
by the potentials induced in a second set of electrodes. The fact that a magnetic field couples 
the transverse and longitudinal modes is important experimentally because otherwise these 
techniques could not be used in the study of the transverse modes. In practice a magnetic 
field adds only relatively small longitudinal components to the low-frequency shear modes 
with which we shall be particularly concerned in this paper, and we shall therefore refer to 
them simply as shear modes, even in the presence of the magnetic field. 

We shall restrict our calculations to modes of response with wavenumbers that are small 
compared with the inverse intelparticle spacing, so that, for example, we are not concerned 
with dispersion near the Brillouin zone boundary of the crystal. When we discuss the 
modes of response of a bounded pool (section 3), we shall also restrict our calculations to 
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wavenumbers that are small compared with a length h, introduced later, which determines 
inter nlia whether the restoring force on the ions resulting from a perturbation to the ion 
density is local or non-local. We~shall neglect any effects due to ripplon coupling, except 
those associated with a ripplon-limited mobility; other effects due to ripplon coupling are 
in any case small in the case of the ion pools. Electron pools above the helium surface are 
more strongly affected by ripplon interactions, especially in the crystal phase, but we shall 
not take account of these effects here. 

We shall first consider the modes of response of an unbounded ion pool, which are 
relatively straightforward (section 2). In section 3' we consider a circular bounded pool, 
such as is used in experiments. An accurate treatment of the bounded pool is possible 
only by using computational techniques, but we argue that modes of response with small 
wavenumbers can be treated analytically if we introduce effective boundary conditions at 
the edge of the pool. We summarise in section 4. 

2. The modes of response of an unbounded pool 

In practice the ion pools are situated between two horizontal metallic electrodes. and in 
this section we shall assume that such electrodes (of infinite extent) surround an unbounded 
pool. Let 2h be the separation between the electrodes and d the separation between the 
plane of the pool and the lower electrode. The electrodes are assumed to have infinite 
electrical conductivity and to be effectively grounded, so that perturbations in the charge 
density in the pool do not lead to any perturbation in the electrode potentials. In this section 
we discuss explicitly only the response of a crystalline pool; as we have seen the response 
of a fluid pool can be obtained by the substitution p + - i q .  We shall use cylindrical 
polar coordinates (I; 8 ,  z ) ,  the ions being in the plane z = 0. 

Let U be the vector field describing the ionic.displacement associated with the mode. 
The linearized equation of motion of the ions in the crystal phase in the presence of a steady 
vertical uniform magnetic field B (pointing normal to the plane of the ions) is then 

where r is the relaxation time associated with the finite ionic mobility, 4 is the electrostatic 
potential in the plane of the ions, and no is the equilibrium areal number density of the ions 
(assumed to be uniform). It is convenient to introduce two scalar fields L and T defined by 

L = V . u  and T = 2 .  (V x U) (2.2) 

where 2 is the unit vector normal to the plane of  the ions. Taking first the divergence and 
then the curl of equation (2.1) we obtain 

1 .  P e , e B .  
5 Mno M M 

L +  - L  - -V2L + -VI$,= -T 

where 0: = V2 - a2/az2 and 

.. I .  p 2 eB . T + - T - - V  T = - - L .  
5 Mno M (2.4) 
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The linearized equation of continuity for fluctuations U in the ionic charge density is 

N J Appleyard et a1 

a = -noeV. U = -noeL. (2.5) 

A solution of Laplace's equation appropriate to the symmetry of a circular ion pool is 

4 = 4k.mJm(kr) exp(im8) exp(*kz). (2.6) 

As shown in, for example, Barenghi et a l  (1991). if the boundary conditions at the plates 
are satisfied, then the conesponding perturbation in the charge density is given by 

U = qm J,(kr) exp(im8) (2.7) 

where 

2sinh(kd) sinh(k(2h - d)] 
sinh(2kh) + (E - 1) sinh(k(2h - d ) ]  cosh(kd)' and F(k) = . (2.8) F(k) 4 k . m  = - 2eok 

For simplicity, but without loss of any. essential physics, we shall take d = h and neglect 
the term in (t - I). Then 

F(k) = tanhkh. (2.9) 

Note also, for future reference, that if k = ik" is purely imaginary 

F ( k )  = i tan k"h. (2.10) 

Let us calculate the response of the pool to the externally applied potential 

@ = @x.mJm(kr) exp(im8)exp(-iwr) (2.11) 

in thc plane of the pool, so that the potential appearing in equations (2.1) and (2.3) is the 
sum of (2.6) and (2.11). 

Tentatively. we assume that the resulting L and T take the forms 

L = Lk,,Jm(kr)exp(im8) exp(-iot) 

T = Tk.*Jm(kr) exp(im8) exp(-iwr). 

Substituting into (2.3) and (2.4), we find that 

(2.12) 

ek2 1 @?em (2.13) [U2 + - o:(k) Lk., - iwwcTk,m = -- 
io 

and 

where 

(2.14) 

(2.15) 
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and, as before, 

if k is real, or 

and 

0, = -- 
noM 

if k is imaginary; and where 

e E  
w ,  = - 

M 

(2.16) 

(2.15a) 

(2.16~) 

(2.17) 

We confirm that solutions ofihe form (2.12) do exist. From equations (2.13) and (2.14) we 
obtain the responses Lk.m and h., to drive the CQ.~: 

-iww, 
E., = - d ( k )  + iw/r] Lk.m 

(2.18) 

(2.19) 

The dispersion relation for the modes of oscillation is given by the vanishing of the 
denominator of (2.18). In the limit of zero damping ( r  -+ CO) we find two branches, 
given by 

(2.20) 

In the absence of a magnetic field {wc = 0) the two frequencies are real only if k is real, 
and they reduce simply to 

w+ = OJf w- = U , .  (2.21) 

These two dispersion relations are plotted in figure I ,  for a typical value of the density 
no. In the presence of a magnetic field  the^ two frequencies can be real not only for real 
values of k but also. at least formally, over certain ranges of imaginary k .  For the case 
B = 1.2 T, and for the same density as in figure 1, the exact forms of the dispersion 
relations (2.20) are plotted in figure 2. In practice, for the case of real k ,  wt << df, and then 
the following approximate expressions for w+ are useful: 

(2.22) 
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10 lo' io3 1 0' 
P / n i l  
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Figure 1. The dispersion relalions for the crystalline Figure 2. The dispersion relations for the crystalline 
phase in zero magnetic field: angular frequency, 0. phase in a vertical magnetic field of 1.2 T. Angular 
plotted against wwenumber k .  no = 7.46 x IO" m-'. frequency plotted against k or k": k is a real 
Solid line: longitudinal modes; broken line: transverse wavenumber: k" is the magnirude of a purely imaginary 
modes. wavenumber. Solid line: undamped magnetoplasma 

wave frequencies plotted against k. Broken line: 
frequencies of undamped Vmsverse waves plotted 
against k .  Dotted lines: evanescent modes plotted 
against k ' .  

and 

(2.23) 

However, to obtain the proper dispersion curves for imaginary k the accurate equation (2.20) 
must be used. The peak amplitudes in the response, corresponding to the frequencies (2.22) 
and (2.23), are given respectively by 

The linewidths (FWHH) for Lk.,,, and q.,,, are equal and given respectively by 

(2.24) 

(2.25) 

(2.26) 

The modes with frequency w- are pure shear modes in the absence of a magnetic field, the 
effect of the magnetic field being to introduce some longitudinal component and to reduce 
the frequency (for a given k). The modes with frequency w+ are longitudinal plasma modes 
in the absence of the magnetic field, the effect of the magnetic field being to introduce 
some transverse component and to shift the frequency by an amount that is only weakly 
dependent on the shear modulus. 



Ion pools under the surface of superfluid helium 8945 

Since the system is linear, the response of the pool to a sum of perturbing potentials of 
the form 

(2.27) 

will be a corresponding sum based on the forms (2.12). 

It is easily verified that 
If the fields L and T are known then the field U = (ur ,  UQ, 0) is determined uniquely. 

(2.28) 

1 
2k uo = -iC - exp(ime)[Pk.,~J,-,(kr) + Qk,,J,+l(kr)] exp(-iwt) 

where 

(2.29) 
k.m 

and 

(2.30) 

(2.31) 

We have made use of equation (2.19) 
In atruly unbounded pool, modes with an imaginary k cannot of course exist. However, 

such modes can play an important role in a bounded pool, to which we now turn out attention. 

3. The response of a bounded pool 

3.1. Boundary conditionr 

In general terms, of course, resonant modes can exist in a bounded pool only for a discrete 
set of frequencies, o, which are determined by the boundary conditions at the edge of 
the pool. The calculation of these frequencies is generally rather difficult, because the 
equilibrium density of the pool is not spatially constant near its edge. Furthermore, the 
relationship between a perturbation in~ the  density of the pool and the resulting perturbation 
in the electrostatic potential is generally non-local, with a range of order h, and this fact 
adds to the difficulty near the edge of the pool. The non-local behaviour can be seen from 
equation (2.8), which shows that the restoring force. - ( e / M ) V L b  in the equation of motion 
(2.1) is proportional to the local gradient in the ion density through a factor that is generally 
dependent on k ,  unless kh < 1. However. in practice we are often concerned with modes 
having small wavenumbers, small compared with I / h .  and we shall argue that w e ~ c a n  
deal with such modes quite simply by ignoring the detailed behaviour near the pool edge 
and using effective boundary conditions. Otherwise it is necessary to use computational 
techniques, such as those described by Nazin and Shikin (1988) and by Appleyard er al 
(1995). 
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We shall consider a circular ion pool, of radius R, again formed midway between 
electrodes that are separated by a distance 2h, and we shall suppose that h << R ,  as is the 
case in practical experiments. As shown in, for example, Glattli et al (1985) and Barenghi 
et a1 (1991), such a pool has an almost constant areal density, no, except within a distance 
of order h from its edge, where the density falls gradually to zero, although the pool still has 
a well defined edge at which the radial component of the density gradient becomes infinite. 
We shall be interested in modes for which the wavenumber k satisfies the inequality kh (< I .  
We shall make the reasonable assumption that such modes propagate in the same way as 
in an unbounded pool of density no, and that we can take account of the edge of the pool 
by simply imposing suitable boundary conditions at r = R, the edge of the pool being 
assumed in effect to be abrupt. This was in fact the approach adopted in Barenghi et al 
(1991), where it was shown from numerical simulations of the behaviour of the pool that 
one such boundary condition is, to a good approximation, 

U, = 0 ar r = R.  (3.1) 

Taking into account a finite shear modulus, as we do in this paper, we guess that a second 
boundary condition is 

[ r$( : ) ] ,=n = 0 
at r = R 

which follows from the fact that there can be no shear stress at the edge of the pool. 
We emphasize that this approach can describe satisfactorily only those modes that behave 

smoothly in the region of width h near the edge of the pool; even then it can give only a 
good approximate description (Glattli ef a1 1985). It cannot describe a mode that involves, 
for example, any oscillation in the perturbed electrostatic potential in the edge region. It 
might be thought that such an oscillation could not arise in any mode with a frequency so 
low as to be comparable with those of the low-k shear modes with which we are particularly 
concerned in this paper. Curiously this is not true. In particular, it is not true of the types 
of edge mode considered recently by Nazin and Shikin (1988) and observed by Elliott et 
a1 (1995b). We shall need to remem-ber the possible existence of these novel edge modes 
in our later discussion. 

3.2. Magnetoplasma modes: an elenientary treatmenz 

Before we proceed further we shall summarize the results of existing elementary calculations 
on the effect of a magnetic field B on the plasma modes in a bounded pool (magnetoplasma 
modes). The effect of a shear modulus was ignored (even though the calculations were 
applied to crystalline phases), and use was made of only the boundary condition ur = 0 
at an assumed abrupt edge of the pool. As can easily be shown from equations (2.19) and 
(2.28). this boundary condition leads to allowed values of k that are given by 

(w-o,)mJ,(kR) -okRJ,+l(kR) = O .  (3.3) 

We see that axisymmetric and non-axisymmetric modes behave differently. For 
axisymmetric modes (m = 0), which are non-degenerate, the allowed values of k are 
independent of B .  As we see from equation (2.22), with U, = 0, the frequency of each 
plasma mode then increases with E according to the relation (Melior et al 1988) 

(3.4) OZ(B) = "(0) + 0JC.~ 2 
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For non-axisymmetric modes, however, the allowed values of k depend on B ,  and this leads 
to a more complicated behaviour. A degeneracy with respect to the sign of m is removed 
by thc ficld, and the splitting increases with increasing field. In the case of the lowest 
modes with a given value of Jmj, the mode with negative m increases with increasing B ,  
while that with positive m decreases. At a sufficiently large value of B the frequency of 
this latter mode falls below the cyclotron frequency, w,. As we see from equation (2.22), 
w, and therefore k must then become imaginary (ik"). In its radial dependence the mode 
becomes evanescent, the amplitude being large only near the edge of the pool. The mode is 
then called an edge magnetoplasma mode (Glattli et al 1985, Mast et al 1985, Appleyard et 
al 1995). With further increases in B the'value of k" will also increase, leading eventually 
to a failure of the assumption that k"h (< I .  Our treatment must therefore fail in the high- 
field limit. There is then the need for a treatment such as that used by Nazin and Shikin 
(1988). As we have already mentioned, this treatment leads to the prediction that there are 
families of (non-axisymmetric) edge modes other than those considered here and for which 
the perturbed electrostatic potential oscillates in space within the region of width h close 
to the edge of the pool. Surprisingly, as we have already mentioned, such modes can have 
low frequencies. 

3.3. Use of the correct boundary conditions in the crystal phase 

We emphasize that the calculation mentioned in subsection 3.2 ignored any sheaf modulus 
in the system and ignored the associated boundary condition (3.2). We now examine the 
effect of taking these features of the real crystalline system into account. 

Consider first the case when there is no magnetic field. Equations (2.13) and (2.14) 
are uncoupled, and we have pure,plasma modes (T = 0) or pure shear modes (L = 0). 
For axisymmetric modes (m = 0) the problem is then straightforward. For the plasma 
modes, ug = 0 everywhere, while for the shear modes ur = 0 everywhere. as we see from 
equations (2.28) and (2.29). The wavenumbers and frequencies of the plasma modes are 
determined by the boundary condition (3.1); those of the shear modes by (3.2). However, 
this simple situation does not hold for non-axisymmetric modes. In this case both U ,  and 
ug are generally finite, and each mode must satisfy both (3.1) and (3.2). A single mode, 
with a single value of k, cannot do this; if the mode satisfies (3.1) it generally violates (3 .2) ,  
and vice versa. The correct modes must therefore be mixtures of two 'free space' modes, 
with different k but the same frequency w. In the case of non-axisymmetric modes in zero 
magnetic field, one of these modes will be a plasma mode and the other a shear mode, as 
we see from figure 1. 

3.4. Normal modes in a magnetic field 

In the presence of a magnetic field the situation is more complicated. Consider first the case 
of axisymmetric modes. If we examine figure 2 we see that a mode with, for example, a low 
frequency (less than 0,) and real wavenumber can mix only with a mode with an imaginary 
wavenumber. k = ik". Owing to the multivalued nature of tanh(ik"h) = i tan(k"h), there 
appear to be many modes with imaginary wavenumbers that could be involved in the 
mixing. However, all except that with the smallest imaginary wavenumber certainly violate 
the condition k"h <<~ 1. Therefore our treatment of them cannot be correct; indeed they 
 may^ not exist. Tentatively we shall ignore them. In the case of non-axisymmetric modes 
the situation becomes even more complicated, owing to the existence of the Nazin-Shikin 
modes, which might also play a role. Again, however, we shall tentatively ignore them. 
Our approach then is to assume that we can make use of effective boundary conditions, 
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represented by equations (3.1) and (3.2), and to assume also that we need mix only modes 
for which the real and imaginary parts of the wavenumber are small compared with l l h .  

With these understandings we can define the normal modes of the pool. A normal mode 
of frequency o will be of the form 

N J Appleyard et a1 

L(r,  e)exp(-iwr) = [Lk,.,J,(klr) + Lh.,J,(kzr)]exp(ime)exp(-iwr) (3.5) 

(3.6) T(r ,  e) exp(-iwt) = [Tx,.,J,(klr) + Tw,.,J,(kzr)] exp(ime)exp(-iwr) 

where k , (w)  and kz (o )  are solutions of the equation 

[U' - &k)][w* - w:(k)] - u'u,' = 0. (3.7) 

The coefficients E,.,,  and Tkl.m are related to Lk,.m and Lk2.,,, respectively by equation ('2.19). 
The wavenumbers k l ( w )  and k&) correspond to the intersection of a horizontal line 
at frequency U with the dispersion curves of figure 2 (we neglect intersections at high 
wavenumbers, as we have already explained). For w c: wcl one of the wavenumbers k l  
and kz is real and the other imaginary; for w > U,, both are real. These wavenumbers 
must be chosen in order that (3.5) and (3.6) lead to displacements U, and ug satisfying the 
boundary conditions (3.1) and (3.2). This procedure defines sets of wavenumbers k1.i and 
k2.i (i = I .  2, 3 . .  .), corresponding frequencies wj, and ratios Lk,,;.,/Lk,(,,, which, when 
substituted into (3.5) and (3.6), define the required normal modes, [Li.m(r, e), Ti.,@, e)]. 
The frequencies of the low-lying shear modes for a typical pool of positive ions ( M  = 
2.02 x lo-= kg) are given in table I, where they are compared with those obtained by 
ignoring the boundary condition (3.1). In deriving these frequencies, and in calculating 
the response shown later in figure 3, we have assumed that the shear modulus is given 
by equation (1.2), with a small correction for the finite temperature obtained from the 
experimental data of Glattli era1 (1985) on a two-dimensional electron solid. 

Table 1. The frequencies (in Hz) of the low-lying shear modes of a circular pool of radius 
13.6 mm: no = 7.46 x 10" m-'. Positive ions: B = 1.2 T, 7 = 17 mK. For a given azimuthal 
quantum number m the modes x e  labelled by successive integers n. The figures in brackets a ~ e  
:hose obtained if the boundary condition (3.1 j is ignored. 

Mode m 0 I -I 2 -2 

n 
I 709.4 348.1 348.2 606.3 606.3 

(673.91 (318.0) (317.1) (577.0) 675.9) 

. ......., I...,,,".,.,..,... .,.,,. ,.I ,.,. , ,  ..,,. , , , I  , ,  , , , ,,,,, ~~ ~ 

2 
. .  . .  . .  . .  . .  
1305.8 978.6 979.3 1248.4 1248.7 
(1289.7) (970.4) (970.2) (1241.4) (1241.1) 

3 1890.0 1581.3 1581.9 1851.2 1851.5 
(1881.4) (1578.3) (1578.2) (1848.5) (1848.3) 

In the absence of a magnetic field, modes with equal values of Iml are degenerate. In 
the case of the longitudinal plasma modes a magnetic field of order 1 T leads to a large 
splitting (Glattli et a1 1985, Appleyard et a1 1995). We see from table I ,  however, that for 
the shear modes the splitting is very small (less than O.l%), and it is much too small to 
have been resolved in experiments so far carried out (Elliott er al 1995a). 
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0.0 1.0 2.0 3.0 
Frequency I Wz 

Figure 3. The calculated response to an axisymmetric edge drive of a pool of radius 13.6 mm at 
a lemperatutt of 17 mK. no = 7.46 x 10" m-*: B = 1.2 T. The edge is driven at an amplitude 
of 0.29 wm. The response U" is the @-component of the velocity measured at the edge of the 
pool. c = 19.2 ms (see text). The pwks correspond to the fiat four axisymmetric transverse 
modes. 

3.5. The response of the pool to M external drive 

We are interested in the response of the pool to being driven at a frequency w close to 
the natural frequency of one of the modes, in the presence of a small but finite damping, 
described by the relaxation time T. In principle, two forms of drive can be used: the bulk 
of the pool can be exposed to an electric field oscillating at frequency w ('bulk drive'): or 
the edge of the pool can be moved to and fro at the frequency w ('edge drive'). In practice 
both types of drive are present at the same time. 

We consider first the response of the pool to a bulk drive described by an electrostatic 
potential in the plane of the pool equal to 

@(r ,  0)  exp(-iwr). (3.8) 

The normal modes Li.m(r. 6') form a complete set, and therefore we can write 

(3.9) 

where the coefficients yi.m are determined in the usual way. Suppose that o is close to the 
frequency, wj. of one of the normal modes [Lj.m(r, e), q.,"(r. e) ] ,  and that the damping 
is small. Then, to a good approximation. only this mode will be excited with a significant 
amplitude, and only the component yj,mLj.m(r, 0) in the summation (3.9) need be taken into 
account. Using (3.5) we see that the driving potential can be written as a linear combination 
of two terms 

Y J ~ [ L ~ , . , . ~ ~ ~ ~  ( h . , r )  + L K ~ , ~ . ~  J m ( k , j r )  J exp(im0). (3.10) 

The response can then be calculated from equations (2.18) and (2.19): it will be a linear 
combination of two terms, due to the two terms in the driving potential (3.10). 



8950 N J Appleyard et a1 

The case of an edge drive involves the replacement of the boundary condition (3.1) by 
one that describes the imposed motion of the edge of the pool. We shall consider the case 
where this motion is described by the boundary condition 

U? = U0 exp(im.4) exp(-iwr) at r = R (3.11) 

so that only modes with a particular value of m are excited (the more general case can 
be treated by straightforward superposition). We must recognize that with an edge drive 
waves are generated at the edge of the pool and propagate inwards through the pool centre 
and out again. We must therefore take account of the spatial attenuation of these waves as 
they propagate. which means that the wavenumbers we use must be complex, rather than 
simply pure real or pure imaginary. These complex wavenumbers will be given by the 
vanishing of the denominator of equation (2.18). We are particularly interested in the case 
when w < 0,; the two wavenumbers are then of the form 

k ,  = ko + ik" kh = i& + k' (3.12) 

where k" << ko and k' << i o .  Then the response of the pool has  the form 

(3.14) 

where the Ps and Qs are given in terms of parameters GU., and Q,,.m by equations (2.30) 
and (2.31). Applying the boundary conditions (3.1) and (3.2) allows us to determine 
and Tb,,,, and so obtain the required response. 

In figure 3 we show an example of the calculated response of the pool described in 
table I to an axisymmetric edge drive over a range of low frequencies. The pool is in the 
crystal phase at 17 mK, and the modes shown are the lowest four axisymmetric shear modes 
in a field of 1.2 T. It is assumed that the modes are damped only by the drag on a moving 
ion associated with the observed ripplon-limited mobility at the temperature of 17 mK and 
a trapping depth of 55.3 nm. In reality other contributions to the damping may exist; for 
example, from internal friction in the two-dimensional crystal. The results of this type of 
calculation are in good agreement with experiment (Elliott et a1 1995a). 

3.6. The response in rhej4uid phase 

As we explained in the introduction, we can obtain the response in the fluid phase by 
replacing the shear modulus JL by -iwq, where q is the fluid viscosity. At low frequencies 
the modes of the pool that are excited are now viscous waves, modified by the damping 
associated with the relaxation time r ,  so that there is no longer any resonant response. 
We show in figure 4 examples of the calculated response to an axisymmetric edge drive 
of the ion pool of table 1 at a temperature of 200 mK, which is about 4 mK above its 
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Figure 4. The calculated responses to an axisymmrtric edge drive of the same pool as in 
figure 3. but at a temperature of  200 mK. E = 1 2 T. The edge is again driven at an amplitude 
of 0.29 pm. T = 1.72 ms (see text). The graphs show the 8-component of the velocity plotted 
against radial distance from the centre of thr pool for different frequencies. (a) kinematic 
viscosity, U = q / M n o  = 2.20 x IO-' m2 s-': (b) Y = Z.20 x 10-l m2 s-l. It is assumed that 
the system is behaving JS a conventional two-dimensional fluid. 

melting temperature. The trapping depth is again 55.3 nm. We assume that the pool is in 
a conventional fluid phase, and we show plots of the amplitude of the &component of the 
ionic velocity against radial distance from the cenue of the pool for various frequencies 
and two values of the kinematic viscosity of the ionic fluid. The value of T is chosen to 
correspond to the observed ripplon-limited mobility at the temperature and trapping depth 
concerned. We shall compare these calculations with experiment in a later publication. 

4. Summary and conclusions 

We have reported a theoretical study of the response to an oscillating electric potential of 
a two-dimensional pool of ions trapped below the free surface of superfluid helium in the 
presence of a vertical magnetic field, the driving field and the response being in the plane of 
the ions. We have concentrated on modes of response of long wavelength, and our results 
underly the experimental study of the modes of transverse oscillation of the ion pools in 
both the crystal and the fluid phases. The results are applicable to other two-dimensional 
classical Coulomb systems. 
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